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Abstract

Nifedipine is used for treating mild to severe hypertension and preventing preterm labor in pregnant women. Nevertheless, concerns about nifedipine
fetal exposure and safety are always raised. The aim of this study was to develop and validate a maternal-placental-fetal nifedipine physiologically
based pharmacokinetic (PBPK) model and apply the model to predict maternal, placental, and fetal exposure to nifedipine at different pregnancy
stages. A nifedipine PBPK model was verified with nonpregnant data and extended to the pregnant population after the inclusion of the fetoplacental
multicompartment model that accounts for the placental tissue and different fetal organs within the Simcyp Simulator version 22. Model parametrization
involved scaling nifedipine transplacental clearance based on Caco-2 permeability, and fetal hepatic clearance was obtained from in vitro to in vivo
extrapolation encompassing cytochrome P450 3A7 and 3A4 activities. Predicted concentration profiles were compared with in vivo observations and
the transplacental transfer results were evaluated using 2-fold criteria. The PBPK model predicted a mean cord-to-maternal plasma ratio of 0.98 (range,
0.86-1.06) at term, which agrees with experimental observations of 0.78 (range, 0.59-0.93). Predicted nifedipine exposure was |.4-,2.0-,and 3.0-fold
lower at 15, 27,and 39 weeks of gestation when compared with nonpregnant exposure, respectively. This innovative PBPK model can be applied to

support maternal and fetal safety assessment for nifedipine at various stages of pregnancy.
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Pharmacotherapy during pregnancy is confined by the
currently limited knowledge about fetal drug exposure
and safety. In 1996, the following question was pub-
lished in a specialized journal: Is the use of nifedipine
during pregnancy safe for the fetus (adapted from Tadio
et al')? Nifedipine has been extensively used in the
treatment of mild to severe hypertension for pregnant
women and as a tocolytic agent to prevent preterm
labor.>* Twenty-seven years have passed since then
and there are still many questions to be answered on
this topic. Administering nifedipine during pregnancy
is believed to carry varying levels of teratogenic risks.
These risks range from atrial septal defects and um-
bilical hernias when administered in the first trimester,
as observed in animal models® and/or humans,®’ to
minor birth defects such as slight dysplasia of the hip.®?
In addition, exposure to nifedipine during the third
trimester of gestation is linked to an elevated risk of
neonates developing jaundice and seizures.”-'”
Different physiological changes take place during
pregnancy, which can alter drug exposure.'! Following
multiple administrations of 20-mg nifedipine slow-

release tablets every 12 hours, the area under the
plasma concentration-time curve from time 0 to 12
hours in women at labor (120 ngsh/mL)'? was found to
be approximately 60% lower than in the nonpregnant
population (300 ngeh/mL)"? under the same dosing
regimen. This decreased nifedipine exposure during
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pregnancy was largely attributed to the cytochrome
P450 (CYP) 3A4 metabolism'# that is induced during
pregnancy reaching about 2.3-fold.!! Nifedipine crosses
the placental membrane with an umbilical cord-to-
maternal plasma ratio ranging from 0.59 to 0.93.1%15-1%
It has been reported that the pharmacokinetics (PK)
and placental transfer of nifedipine were similar
when studied in 2 groups of pregnant women with
hypertension during the third trimester with (n =
10) and without (n = 12) type 2 diabetes mellitus.'”
Nonetheless, due to ethical, logistical, and practical
constraints, information regarding placental and fetal
exposure to nifedipine during pregnancy is limited to
the sampling of placenta, cord blood, and amniotic
fluid at birth or when a diagnostic amniocentesis is
performed.

Pregnancy physiologically based pharmacokinetic
(PBPK) models, which encompass both drug-related
parameters and the gestational age-dependent physio-
logical parameters of the mother, placenta, and fetus,
stand as a promising tool to investigate the influence
of these physiological changes on drug exposure dur-
ing pregnancy.’’ While the impact of these changes
on maternal exposure has been demonstrated for dif-
ferent CYP3A4 substrates, including nifedipine!®-2!->2
and relevant maternal physiological models have also
been developed,'! nifedipine transplacental and fetal
exposure has not been assessed yet using the PBPK
approach.

This study aimed to extend the previously pub-
lished maternal nifedipine PBPK model to include the
multicompartmental fetal and placental components
and further apply the model to predict the maternal,
placental, and fetal exposure to nifedipine at different
stages of pregnancy upon administration of different
formulations with different dosage regimens.

Material and Methods

Workflow
The Simcyp Simulator Version 22 (Certara) was used
for all predictions of nifedipine PK in the pregnant pop-
ulation using the PBPK model workflow as depicted in
Figure 1. The first step was the model building and val-
idation using clinical data from the nonpregnant pop-
ulation. Subsequently, pregnancy-related physiological
parameters and their variability between subjects were
incorporated, as part of the virtual pregnancy popu-
lation available with the Simulator. The physiological
changes during pregnancy were incorporated into the
model as continuous functions to allow predictions
across various gestational ages.'!

In this framework, the multicompartment fetal
PBPK model is linked with the maternal PBPK
model via a permeability-limited placenta model. Am-

niotic fluid was represented by a single compartment.
The structure of the model, including underlying as-
sumptions and equations, has been detailed in prior
publications.?>**

Model Building

The default settings from the nifedipine compound file
in the Simulator’s compounds library were retained for
the immediate release formulation. For the slow-release
solid formulation, the established slow-dissolution pro-
file was employed, as previously outlined.!" The input
parameters used for the nifedipine PBPK model can
be found in Table S1. Before the integration of the
fetoplacental and maternal PBPK models, the accu-
racy of the previously developed nifedipine PBPK
model!! predictions was verified in the nonpregnant
population®> 27 (Table S1 and Figure S1).

To parameterize the maternal-placental-fetal model
(details provided in Table S1), the placental permeabil-
ity was estimated by scaling the nifedipine transplacen-
tal clearance (CLpp) based on Caco-2 cell permeability
studies. The nifedipine apparent permeability across
Caco-2 cells (52.3 x 107% cm/s)*® was used to estimate
the effective permeability (5.39 x 10~* cm/s). This value
was further adjusted by the placental villi surface area”
of 11.8 m? and then divided by the placental volume
of 670 mL at term,* resulting in CLpp of 0.33848
L/h/mL placenta. This CLpp was used as a model input
parameter for determining passive diffusion clearances
on both sides of the placenta, under the assumption of
a placental density of 1 g/mL.

To predict the amniotic fluid exposure to nifedipine,
the fetal renal clearance (CLg) was calculated using
the fetal glomerular filtration rate (GFR) of 4.92
mL/min,*! a typical adult GFR value of 121 mL/min,*
fetal body weight at term of 3.5 kg (Simcyp default),
and the adult nifedipine CLg of 0.031 L/h (Simcyp
default), using the following equation:

Fetal CLR (L/h/kg)

_ Adult CLg (L/h) x Fetal GFR (mL/min)
~ Fetal body weight (kg) x Adult GFR (mL/min)

The average volume of amniotic fluid swallowed by
the fetus at term (400 mL/day)*® was used to describe
the swallowing activity clearance in the model (ie,
CLgyallowing = 0.0048 L/h/kg fetal body weight). Ad-
ditionally, the intramembranous pathway transfers of
fluid and solutes, approximately 350 mL/day from the
amniotic cavity to the fetal circulation across the am-
niotic membranes, were incorporated into the model.
The average flow rate was calculated using 350 mL/day
and normalized to kilograms of fetal body weight at
term (ie, CLintramembranous = 0.0044 L/h/kg). The fetal-
to-amniotic clearance, composed of the sum of fetal
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Figure 1. Nifedipine physiologically based pharmacokinetic (PBPK) model workflow. ADME, absorption, distribution, metabolism, and excretion; CYP,

cytochrome P450; IVIVE, in vitro to in vivo extrapolation.

CLRr and CLj,gamembranous, Was incorporated into the
model (CLr 4+ CLjyyamembranous = 0.005 L/h/kg) (Table
S1).

Two strategies were explored for predicting the
hepatic fetal metabolism of nifedipine. The first one
involved in vitro to in vivo extrapolation (IVIVE),
while the second leveraged neonatal clearance at birth
using pediatric population data within the Simcyp
Simulator. For the IVIVE strategy, it was assumed that
CYP3A7, CYP3AS, and CYP3A4 contributed to the
metabolism of nifedipine by term fetuses (see Table 1).
The in vitro maximum velocity (Vmax) and Michaelis
constant (K;;,) values for CYP3A4 and CYP3AS5 were
taken from the Simcyp nifedipine file as they have
been combined from different experiments (see Table
S1). As for CYP3A7, published in vitro values for
Vimax and K., from recombinant CYP3A7 isoform
(Williams et al'#) were used in the calculation of total
hepatic intrinsic clearance and scaled up to the fetal

hepatic clearance (CLy ferys) according to the following
equations:
Vmax.,, (pmol/min/pmol CYP3A7)
= VmaX;.yitro (pmol/min/pmol CYP3A7)
x ISEFcyp3a7

chorr,CYP3A7 (MM) = KmCYP3A7, in-vitro X fumic

Vmax,felus,CYPi (MmOI/h) = Vmax, corr X CYPabundance fetus

60
MPPGL etus Li etus TANNANA
X GLptys X LivWigeys X (1000000>

Vmax fetus, CYP3A4 Vmax fetus, CYP3AS
CLin (L/h) = +

K, corr,cyp3as4 K, corr,cYP3A5

n Vinax, fetus, CYP3A7

I<m, corr, CYP3A7
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Table I. In Vitro to In Vivo Extrapolation to Nifedipine Fetal Metabolism

Parameter CYP3A7 CYP3A4 CYP3AS Reference

Kmnrheyp (LM) 34 3029  Williams et al'#; Simcyp Default

Vinaxrhcyp (nmol/min/nmol P450) 2 23.05  Williams et al'%; Simcyp Default

CYP abundance in the fetus (pmoLCYP/mg microsome) 359 I5 Shum et al**, Stevens et al*>, Quinney et al??

Vimaxifetus (LmMoL/h) 58.0 70.9 Calculated

ISEF 0.044 | Shum et al** for CYP3A7, value assumed for 3A4 and 3A5
CLine (L/h) 2.0 2.3 Calculated

ClLu ferus (L/h/kg) 0.14 0.16 Calculated

CLy, hepatic clearance; CLin,, intrinsic clearance unbound; CYP, cytochrome P450; ISEF, intersystem extrapolation factor; K.,, Michaelis constant; rhCYP,

recombinant human isoforms; Sso, constant for sigmoidal kinetics that represents the substrate concentration at which 50% of V. is achieved; Vi, maximum

velocity.

Q X fuB X CLint,fetus
Q+ fup x CLint,fetus

1
* Body weightg,,s

CLH,fetus (L/h/kg) =

Vmax.invitro 18 the in vitro maximal reaction veloc-
ity, ISEFcyp3a7 is an intersystem extrapolation factor
(ISEF) for CYP3A7 of 0.044 obtained from Shum
and Isoherranen,’* CYPpundance fetus 18 the amount of
CYP isoenzyme in the fetal liver and set to 5, 15,
and 297 pmol/mg microsomal protein for CYP3A4,%
CYP3AS5,% and CYP3A7,% respectively. The amount
of microsomal protein in milligrams per gram of fetal
liver (MPPGLg, ) was set to 23.25 mg protein/g liver
(average of published values reported in Shum and
Isoherranen and Pelkonen et al*®). The V .y smeyp and
CYP abundance in fetus values are demonstrated in
Table 1. Fetal liver weight of 147 g in term neonates
weighing 3.5 kg is the calculated value within the
Simcyp Simulator.?” The fetal hepatic fu,,; is the frac-
tion unbound in microsome (calculated using Simcyp
calculator), fypfetar 1s nifedipine fraction unbound in
fetal blood of 0.07 (calculated within the Simulator
by dividing fetal plasma fraction unbound by fetal
blood to plasma ratio). Qg 18 the fetal hepatic flow
of 17.0 L/h for the fetus at term calculated within
the simulator.®® The total CLyj ferys calculated through
IVIVE was 0.13 L/h/kg fetal weight.

The second strategy to achieve CLy feys Was using
the predicted neonatal CLy at birth (Simcyp Pediatric
Simulator) obtained for a single intravenous dose of
nifedipine 5 mg administered to virtual subjects (N =
200 neonates; 50% female) aged 0 years. The obtained
mean CLy was 0.14 L/k/kg body weight, so this value
was used as input for CLy fequs.

The nifedipine transplacental transfer PBPK model
was validated by comparing simulated trials against
clinical studies using the same study design. The clinical
studies and the information used to set the simulated
trials are depicted in Table 2. The virtual pregnancy

population within the Simcyp Simulator was used to
replicate clinical studies during pregnancy using the
mean gestational week (GW) or GWs range if a wide
range is reported in the study. The disease status was not
considered for the performed simulations in the current
work.

The PBPK model predictions were deemed success-
ful and acceptable when the observed PK profile was
within the 5th and 95th percentiles of predicted data,
and the predicted PK parameters aligned within a range
of 0.5- to 2-fold in comparison to the observed data.

Results

The PBPK model predictions, aligned with available
observations, show nifedipine concentration profiles
in maternal plasma during delivery, as depicted in
Figure 2. Additionally, Figure 2 shows the predicted
nifedipine concentration profiles in the amniotic fluid,
umbilical vein (UV), and the placental intervillous
space during delivery according to the observed data.
Table 3 provides a comparison of the predicted nifedip-
ine transplacental transfer parameters with the ob-
served data from clinical studies.

The mechanistic placental model of passive
transplacental transfer (CLpp) of nifedipine using
Caco-2 permeability resulted in predicted nifedipine
umbilical concentrations that closely resembled the
observed concentrations in clinical studies (Figure 2,
Plots 1B, 2B, 3B, 4B, 5B, and 6B), indicating a UV-to-
maternal vein (UV/MV) ratio close to the unity.

Accounting for nifedipine’s fetal metabolism using
either full-term metabolic clearance at birth (data not
shown) or using the IVIVE approach to scale in vitro
data based on fetal liver yielded similar and accurate
descriptions of the observed nifedipine fetal concentra-
tions data. Ultimately, the IVIVE approach based on
scaled fetal data was selected.

The model prediction for nifedipine in maternal
blood within the placenta describes the observed val-
ues for nifedipine intervillous space concentrations
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Figure 2. Maternal-placental-fetal nifedipine concentration profiles after oral administration of nifedipine. Solid lines, predicted means; dashed lines,
5th and 95th centiles; closed circles, individual observations; closed circles filled with gray, observed mean and standard deviation. Plots |, Trial Design

I (Filgueira et al'?

raw data); Plots 2, Trial Design 2 (Manninen and Juhakoski'®); Plots 3, Trial Design 3 (Ferguson et al'®); Plots 4, Trial Design 4

(Silberschmidt et al'7); Plots 5, Trial Design 5 (Pirhonen et al'®); Plots 6, Trial Design 6 (Prevost et al'?); Plot 7, Trial Design 7 (Papatsonis et al*’); Plot
8, Trial Design 8 (Marin et al*?). (a) Maternal plasma concentration; (b) umbilical vein concentration; (c) amniotic fluid concentration; (d) intervillous
space concentration. See the Materials and Methods section for trial settings.

(depicted in Figure 2, Plot 1D). Regarding the predicted
nifedipine concentrations in the amniotic fluid, the
model matched observations from 1 study (Figure 2,
Plot 2C), yet it either underestimates (as seen in
Figure 2, Plot 6C) or overestimates (Figure 2, Plot 1C)
the values from other clinical studies.

Discussion

Regardless of recent advancements in clinical obstetric
pharmacology studies, gaps persist in comprehending
maternal and fetal drug exposure. The present work de-

scribes the development and application of an intricate
maternal-placental-fetal PBPK model to predict mater-
nal and fetal nifedipine exposure upon administration
of immediate or modified-release formulations. First,
predicted nifedipine PK parameters were within a 2-
fold range of the observed values in the nonpregnant
population. Moreover, the observed concentration pro-
files were captured within the predicted 5th and 95th
percentiles for the systemic exposure profiles in plasma
(Figure S1 and Table S2).

Validation of the combined maternal-placental-fetal
nifedipine PBPK model was conducted using data

85L8017 SUOWWOD 3A R0 3|qedl [dde au Aq pausenoh ae sajolie O ‘SN JO Sa|nJ 10} AJeiq1 13Ul U AB|IM UO (SUORIPUOD-pUe-SW} /W00 A3 1M AReIq 1 BUl [UO//SCIY) SUORIPUOD PLe SWIS L 84} 89S *[7202/70/62] Uo Afiqi auliuo A8 |IM ‘w0tz Udo(/200T 0T/10p/wo A3 1M Azelq1jpul juo-Tdode//:Sdny Wwiouy papeo|umod ‘G ‘7202 ‘#09r2SST



574

The Journal of Clinical Pharmacology / Vol 64 No 5 2024

Table 3. Mean Predicted versus Observed Nifedipine Transplacental Transfer Data

Trial design | 2 3 4 5 6
Filgueira Manninen and Ferguson Silberschmidt Pirhonen Prevost

Parameter?® reference etal'? Juhakoski'® etal'® etal'’ etal'® etal'’
(AUCuv/Mv obs) 0.59 0.70 0.91 0.77 0.76 0.93
AUCUVMY pred 1.02 1.02 0.86 0.99 1.06 0.91
Ratio 0.58 0.69 1.06 0.78 0.72 1.02
AUCAEMY obs 0.050 0.20 NA NA NA 0.56
(AUCAFMY pred) 0.056 0.31 NA NA NA 0.25
Ratio 0.89 0.65 NA NA NA 2.24
AUC s/Mv obs 0.85 NA NA NA NA NA
AUCsMV pred 0.8l NA NA NA NA NA
Ratio 1.04 NA NA NA NA NA

AF, amniotic fluid; AUC, area under the plasma concentration-time curve; AUCyy/my obs, Observed umbilical vein to maternal vein area under the curve ratio;

AUCyy/Mv pred, predicted umbilical vein to maternal vein area under the curve ratio; IS, intervillous space; MV, maternal vein during delivery; NA, not applicable;
obs, observed mean; pred, predicted mean; UA, umbilical artery; UV, umbilical vein.
a o . . . .

AUC data were used when available; in other cases, the ratio values reported in the study were considered for the observed data.

extracted from 9 clinical studies reporting maternal
plasma concentrations, 6 studies reporting UV plasma
concentrations, 3 studies reporting amniotic fluid con-
centrations, and | study reporting intervillous space
concentrations (Table 2). Predicted versus observed
nifedipine concentration-time profiles and PK param-
eters in the maternal and umbilical cord at delivery are
given in Figure 2 and Table 3, respectively. The UV/MV
nifedipine ratio in plasma based on the area under
the plasma concentration-time curve predicted was
0.98 (0.86-1.06), which agrees with the observed ratio
based on the drug plasma concentration at delivery of
0.78 (0.59-0.93). The observed UV/MYV ratio data are
variable, for example, the average ratio from Prevost
et al' is 1.6 higher than the average ratio reported by
Filgueira et al.!?

The CLpp obtained from the Caco-2 cells approach
was selected for the nifedipine maternal-placental-fetal
PBPK model building for demonstrating an alternative
approach of integrating permeability cell line data for
the placental membrane. It would be ideal to use per-
meability data for nifedipine using a placenta-derived
cell line. However, such information is not available. An
attempt was also performed to include transplacental
clearance reported from an ex vivo cotyledon perfusion
experiment of 0.0324 L/h,*! but this value resulted in a
very low ex vivo transfer of 5%, which does not match
the observed in vivo listed in Table 3.

Results obtained from accounting for nifedipine
fetal metabolism in the model using either full-term
metabolic clearance at birth (data not shown) or using
the IVIVE approach to scale in vitro data based on
fetal liver were similar and adequately described the
observed nifedipine umbilical concentrations. Since the
IVIVE approach is based on scaled fetal data, it was
retained in the model. Nifedipine in vitro oxidation by
CYP3A recombinant human isoforms is in the follow-

ing order CYP3A4 >>> CYP3AS5 >> CYP3A7.'* De-
spite CYP3A4 being the predominant form expressed
in adults,>> CYP3A?7 is expressed in the fetus liver and
decreases with the progression of gestation, achieving
the levels of 311 and 160-201 pmoL/mg fetal micro-
somal protein in the second and third trimesters of
gestation, respectively.>>*> However, it should be noted
that the contribution of fetal nifedipine metabolism to
the overall drug metabolism in the maternal system
can be considered negligible due to small fetal liver
size. The calculated fetal metabolism clearance at term
was 0.45 L/h, which is approximately 0.5% of the
maternal clearance of 89.2 L/h.>} No effort was made
to assess the role of intestinal metabolism in the current
model as the gut CYP3A activity was found to be
approximately 30% of the liver CYP3A activity in
neonates.*?

Nifedipine intervillous space concentrations are
about 80% of the MV concentrations, which is expected
since it is in direct contact with maternal blood. Model
predictions well described these observations as shown
in Figure 1, Plot 1D. Nifedipine can reach amniotic
fluid by different passive mechanisms including the
flux of the fluid through the membrane, placenta, fetal
skin, and lung, and through fetal urination, with the
latter being the main pathways. The developed model
considered multiple pathways, but not all, based on
available data.”> The observed nifedipine amniotic
fluid-to-maternal plasma concentration ratio at steady
state was highly variable (0.050-0.56). The model
predictions were well agreed with those reported by
Filgueira et al'> and Manninen and Juhakoski,'> but
lower than those observed by Prevost et al.!?

Expanding the scope of the nifedipine pregnancy
PBPK model applications, the scenarios of maternal
and fetal nifedipine concentrations at the 15th, 27th,
and 39th GWs (Figure 3) were simulated using the
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Figure 3. Predicted mean maternal (a) and umbilical (b) plasma nifedipine concentration profiles after 20 mg twice-daily oral slow-release nifedipine
tablets to pregnant women at | 5th (green dotted line), 27th (blue dashed line), and 39th (red solid line) GWs. The black dashed-dotted line represents
the mean plasma concentration in nonpregnant women under the same dosage regimen. GWV, gestational week.

same study design of Filgueira et al'> (Trial Design
1). The maternal plasma concentrations decreased with
the increase of GWs due to the increase of CYP3A4
activity during pregnancy.!! The UV concentrations
were similar between the 27th and 39th GWs as
the placenta permeability to nifedipine increases with
pregnancy progression. This ratio is higher than in
earlier pregnancy (15th GW) when the placenta is
less permeable despite the maternal nifedipine gradient
levels at these GWs (Figure 3). The combined main
effects of the increasing maternal elimination and in-
creasing placenta permeability (with little contribution
from the increasing fetal elimination), the mean (£
standard deviation) predicted umbilical/maternal ratios
were 0.3540.07,0.78 £ 0.16, and 1.09 + 0.23 at 15, 27,
and 39 GWs, respectively.

While the nifedipine model has been developed and
integrated with different compound and physiological
parameters, there are still a few limitations to be ad-
dressed. There was a lack in the provided information
in the published studies about the brand and dissolu-
tion data of each nifedipine formulation. For Clinical
Studies 1, 4, 7, and 8, there was an indication that the
formulation was either controlled- or slow-release; a
slow-release option in the model was used. For Clinical
Studies 2, 3, 5, and 6, the solution option in the model
was used as those studies either mentioned the use
of immediate-release formulation or no details were
available (Table S1). For multiple-dose simulations, a
fixed time at steady state was assumed to compare
with the observed results since there was a lack of
treatment durations in the clinical studies. For the
remaining clinical trials, the same study period of the
clinical study was used in the simulation. Figure la
demonstrates the multiple-dose treatment followed by
the last-dose treatment for better data visualization.

It was not possible in the current features of the
Simulator to replicate the trial design where the first
administered formulation was a fast-release and the
second dose was a slow-release formulation (Trials 7
and 8), for these cases, simulations were executed for
the slow-release formulation for which nifedipine con-
centrations were reported. The transplacental transfer
in the developed nifedipine PBPK model was assumed
to be a passive diffusion mechanism. Published studies
showed that nifedipine is a substrate of breast cancer
resistance protein transporter,** 4% but not a substrate
of P-glycoprotein.*’** Accounting for the transporter
kinetics may improve the slight overprediction of the
UV/MV ratio. Nevertheless, such data are still not avail-
able. In the IVIVE approach for predicting nifedipine
fetal metabolism, the ISEF for CYP3A4 and CYP3A5
were set as unity (ISEF = 1) due to the lack of
nifedipine in vitro metabolism data by human fetal liver
in the third trimester of gestation, while the ISEF for
CYP3A7 was set as 0.044 based on data from Shum and
Isoherranen.’* Furthermore, samples obtained from
fetal-placental units are not available before delivery,
so verification of the model prediction during earlier
GWs were not feasible. The variability in UV/MV
ratio measurements could be either due to sampling
procedures or the fact that the efflux transporter was
induced by medications, which were not provided in the
published studies.

The developed nifedipine PBPK model can be used
to predict placental and different fetal organ exposures
after maternal administration of immediate or modified
release formulations, which were limitations in the
previously published model.!?>#-% A fundamental
aspect of fetal pharmacology is that of the amount
(and rate) of the drug reaching the fetus. The drug
transfer to the fetus determines the presence or absence
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of pharmacologic or toxic effects. The model can
be used to assess the fetal exposure scenarios where
maternal exposure is altered due to comedication,
dose or formulation modifications, and changes in
maternal physiology due to comorbidity that can
affect the normal kinetics of nifedipine. Generating
such information for clinicians can help to address
the current gap between nifedipine maternal and fetal
exposure and neonatal outcomes.>*>!

In conclusion, a detailed mechanistic PBPK model
has been developed in this work to predict the maternal-
placental-fetal PK of nifedipine. The model can provide
insight into the nifedipine placental and fetal expo-
sure helping to better understand the mechanisms of
nifedipine distribution and elimination within the fetal-
placental unit. By combining the current model with
response and safety data, we could support precision
dosing strategies based on maternal-fetal exposure.
Continuous enhancement of this “live” PBPK model
depends on future in vitro, ex vivo, and in vivo studies
that can be used to fill any knowledge gaps regarding
transfer mechanisms to improve the confidence in the
model.
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